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Abstract. Statistical analysis of an anatomical structure composed of
multiple objects is useful for many computational anatomy tasks as reg-
istration or classification. As rigid transformations do not belong to an
Euclidean space, conventional mean and covariance formulas could not
be applied to study the movement of each object with respect to the oth-
ers. Some tools from Riemannian geometry are used instead, requiring
the definition of a metric. We show that common metrics are not intu-
itive in the case of an object with an elongated shape and we propose
a new one based on displacements of all the points of the structure. We
describe the method to study the pose variability of a multi-object struc-
ture with this new metric. It is then applied to the statistical analysis of
the rib cage which is composed of 24 elongated bones.

Keywords: Computational anatomy · Rigid transformations · Metric ·
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1 Introduction

Statistical Shape Models are widely used to study variations of shapes for 3D
anatomical structures. A simple and generic model to represent shapes is to
distribute a set of points across the surface of the anatomical structure. Cootes
et al. [1] proposed a method called Point Distribution Model, which consists of
extracting the mean shape and a set of orthogonal modes of variation from a
collection of training samples. Those statistical models are built on point-to-
point correspondences. The number of variables could reach several hundreds
depending on the point density of the geometry description. Such a statistical
model correctly describes the intrinsic shape of the anatomical structure, and
they are used to improve the performances of segmentation and registration
algorithms [2,3].

However, they cannot represent in an intuitive way an articulated anatomical
structure which is composed of several substructures which can move relatively

c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): GRAIL/MFCA/MICGen 2017, LNCS 10551, pp. 114–124, 2017.
DOI: 10.1007/978-3-319-67675-3 11



A New Metric for Statistical Analysis of Rigid Transformations 115

to the others, as for example a rib cage which is built from independent 24 ribs. In
this case, we would like to characterize the intrinsic shapes of each substructure
(e.g. each rib) but also the rigid motion (also called the pose) of the substructure
with respect to a general frame (e.g. fixed on the spine). Capturing the pose
variation of the substructures will lead to a Statistical Shape Model which is
much more intuitively interpretable.

In general, a Statistical Shape Model is composed of a mean description and
an analysis of the covariance of the variability of the structure shape with regard
to the mean description which is given as a set of ordered orthogonal variation
modes. In the case of sets of points, we are in an Euclidean space and we can use
Principal Component Analysis (PCA). But, if we want to study pose statistics,
we face the difficulty that the space of rigid transformations is not an Euclidean
space. Thus, it is not possible to compute the mean of 3D rotations by using the
conventional definition of the mean, regardless of the chosen representation for
rotation (rotation matrix, rotation axis, Euler angles or quaternions).

Nevertheless, the set of rigid transformations SE(3) has the structure of a
manifold. A Riemannian metric on a manifold allows one to measure distances
and angles. By defining a distance function between two 3D rigid transforma-
tions, the manifold locally resembles an Euclidean space, called the tangent
space. Pennec [4] gave basic tools for probabilities and statistics in this gen-
eral framework of Riemannian manifold and applies it to the statistics of rigid
transformations. Fletcher [5] used the Riemannian framework to define Principal
Geodesic Analysis (PGA) for statistical analysis of 3D boundary representations
based on medial atoms linked by rigid transformations.

PGA aims at finding a geodesic subspace that minimize the sum of square
distance of the points to their projection. However, as it is generally compu-
tationally complex, it is often approximated by a tangent PCA (tPCA), which
maximizes the explanation of the covariance matrix by unfolding the distribution
around the mean and making a standard PCA in the tangent space. Neverthe-
less, maximizing the explained variance (tPCA) and minimizing the unexplained
variance (PGA) lead to different results on manifolds [6].

A key-point is then to define an efficient metric which is adapted to the
application. In the case of the rib cage, we have very elongated objects: a small
rotation applied on a point located far from the axis of rotation induces a large
displacement even if the rotation angle is small. In this paper, we propose a
new metric which takes into account in a more intuitive way the application
of 3D rigid transformations on elongated objects. Then we use it to build an
articulated Statistical Shape Model of the rib cage.

2 Defining an Adapted Metric for Elongated Structures

2.1 Limits of the Current Metric

Defining a distance function between two rigid transformations H1 and H2 is
based on a norm function N :

d(H1,H2) = N(H−1
2 ◦ H1). (1)
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Several previous studies have defined a metric to perform tPCA on articu-
lated anatomical structures with rigid transformations. First, a representation
for 3D rotations has to be set: rotation matrix components [3,7], rotation vector
with the Rodrigues’ formula [8,9] or quaternions [10].

The most common norm is based on the vector representation of rotations.
For H ∈ SE(3) a rigid transformation decomposed into a rotation vector r =
ω.(nx, ny, nz)T and a translation t = (tx, ty, tz)T :

Nrotv(H)2 = tT .t + rT .r. (2)

It is important to control the relative magnitude between translation (usually
given in mm) and rotation (usually in radians) by a normalization process. For
example, Boisvert et al. [9] defined an empirical real number that controls the
relative weight of the translation and rotation in the computation of the norm.
Without this normalization process, the first modes would be translation modes
as they account for most of the variance magnitude compared to the rotation
which values in radians are generally quite low.

Another normalization consists of scaling the object geometry so that its
mean radius is set to 1. The displacements of points on the unit sphere is then
given by the rotation angle in radian units [7].

With λ a normalization factor, the norm function is then:

Nrotv(H)2 = tT .t + λrT .r. (3)

Nevertheless, to the authors’ knowledge, available normalization methods
cannot tackle the issue for elongated shape described below, as the ones shown
in Fig. 1.

Fig. 1. Identical rotation applied on two objects: one compact and one elongated. The
usual metric Nrotv is the same in both cases [RA = RB ⇒ Nrotv(RA) = Nrotv(RB)]
although displacements are different [δA < δB ].

This paper aims at providing a generic metric for SE(3), relevant for all kind
of shapes including elongated shapes, in order to apply a tPCA. The second
contribution is of a more practical value and lies in applying this technique to
the construction of an articulated statistical shape model of the rib cage.
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2.2 A New Metric for Elongated Objects

For an object, a rigid transformation H ∈ SE(3) induces a displacement field
δ(H). The object is sampled by points and the vector δ(H) contains the dis-
placements of these points. The norm function is now defined as follow:

N(H)2 = δ(H)T .δ(H). (4)

This new norm can be compared with the common norm by introducing the
moment of inertia.

The norm defined by rotation vector is commonly used [8], [9]. Let r ∈ SO(3)
be a rotation vector. r = ω.n with ω the angle of rotation and n the unit vector
of rotation. We have seen that the usual norm is:

Nrotv(r)2 = rT .r = ω2.nT .n. (5)

The inertia tensor of the object is I. The moment of inertia is defined for the
rotation as follows:

IC = nT .I.n. (6)

For a point pk = (x, y, z) of the object, the displacement induced by the
rotation r is δk = r × pk with ω a small angle. With our metric:

N(r)2 = δk
T .δk,

= ω2.nT .(JT
k .Jk).n with Jk = −pk× =

⎛
⎝

0 z −y
−z 0 x
y −x 0

⎞
⎠ ,

JT
k .Jk =

⎛
⎝

(y2 + z2) −xy −xz
−yx (z2 + x2) −yz
−zx −zy (x2 + y2)

⎞
⎠ .

Supposing that an object of mass m is homogeneous and uniformly sampled
with points k, the inertia tensor is:

I = m
∑
k

JT
k .Jk. (7)

Therefore, using the usual metric Nrotv makes the assumption that the inertia
tensor is the identity matrix, and therefore that the shape is spherical. This
usual norm is a good approximation when the object of interest is compact, but
with elongated shape like ribs, the norm should take into account the specific
geometry. For this purpose, our method uses the inertia tensor inertia tensor.
We believed that using this metric, distances between pose of arbitrary shaped
objects will be more appropriately measured as there is no more requirement for
ad-hoc normalization between rotations and translations.

Under certain conditions (uniformly sampled object centered on its center
of mass, undergoing a rigid motion), our distance has a physical interpretation:
it is proportional to the kinetic energy necessary to move the object from one
position to another.
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3 Statistical Description of Rigid Transformations

3.1 Pose Variations

Some studies used a joint description to perform a tPCA [9,11]. They defined an
anatomical frame for each object and the transformation between two connected
objects was a joint. In particular, the joint method for tPCA is suitable for the
spine as it describes physical articulations, but there are drawbacks for other
structures. First, the connection graph must not contain any cycles as it is the
case for the rib cage (Fig. 2). Indeed, a rib is articulated on both extremities with
the spine and the sternum. Secondly, a fixed object as root of the tree must be
determined. This can lead to numerical drift when an object is far from the fixed
one. It is the same kind of issue than the elongated shape problem expressed
previously.

Fig. 2. Connection graph of the rib cage that shows the articulation loops.

To study pose variations of objects in the dataset, a generalized Procrustes
analysis [12] is performed on each object separately. The rigid transformations
(translation + rotation) applied to perform these multiple alignments as well
as the mean shapes are used to study the pose variations (Fig. 3). With this
method, we go beyond issues described for the joint description.

For an object j belonging to an instance i, Fi,j is the coordinate vector of
points. The mean shape of an object j among instances is Fj obtained from the
multiple alignments. The rigid transformation Hi,j is:

Hi,j = arg min
H∈SE(3)

‖H(Fi,j) − Fj‖. (8)

The rigid transformations obtained from the multiple alignments revealed
how instances differ rigidly from the mean shape of each object.

The mathematical space of rigid transformations is not an Euclidean space.
Therefore, conventional statistics do not apply. However, tPCA concepts can be
applied to generalize statistical notions like average and variance [5].
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Fig. 3. The dataset contains instances composed of N objects described by point clouds
Fi,j . Hi,j is the rigid transformation that aligns the instance i on the mean shape.

3.2 Generalized Covariance

For a rigid transformation Hi,j ∈ SE(3), δj(Hi,j) = Hi,j(Fj) − Fj is the dis-
placement field induced by Hi,j on the mean shape. The norm function was
defined as follow:

Nj(Hi,j)2 = δj(Hi,j)T .δj(Hi,j). (9)

The norm function is defined based on the mean shape, which means that
only the mean shape inertia tensor is taken into account. This ensures that the
norm does not change with the object being transformed.

With this definition of norm function, the distance between two rigid trans-
formations, Hi1,j and Hi2,j , from two different instances is:

d(Hi1,j ,Hi2,j) = Nj(H−1
i2,j

◦ Hi1,j). (10)

This distance is left-invariant as d(H3 ◦ H1,H3 ◦ H2) = d(H1,H2).
Let us call Log the function that calculates the tangent description of a

transformation according to the distance definition. The Exp function is the
reverse of the Log function.

LogId(Hi,j) = δj(Hi,j),

LogHi1,j
(Hi2,j) = LogId(H−1

i2,j
◦ Hi1,j).

ExpId(δi,j) = arg min
H∈SE(3)

(Nj(H)2),

ExpHi1,j
(δi2,j) = Hi1,j ◦ ExpId(δi2,j).

They correspond to the Riemannian Exp/Log for the left-invariant distance
generated by the inertia tensor. This Log function is valid for small angles of
rotation to get the property: LogId(H−1) ≈ −LogId(H).
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A generalization of the usual mean – called Fréchet mean – can be obtained
by defining for an object j the mean as the rigid transformation μj that mini-
mizes the sum of the distances with respect to the set of rigid transformations
H1,j , . . . , HNi,j .

μj = arg min
H∈SE(3)

(
Ni∑
i=1

d(H,Hi,j)2
)

. (11)

The Fréchet mean is computed by a simple gradient descent procedure [4].
This procedure is summarized by the following recurrent equation, with i an
instance and Ni the number of instances in the sample.

μj,n+1 = Expµj,n

(
1
Ni

Ni∑
i=1

Logµj,n
(Hi,j)

)
. (12)

In addition, a dispersion measure is needed to perform most tasks of practical
interest. The covariance is usually defined as the expectation of the matrix prod-
uct of the vectors from the mean. Thus, a similar definition for tPCA would be
to compute the expectation in the tangent space of the mean using the Log func-
tion. Let j1, j2 be two objects with two mean shapes Fj1 ,Fj2 , two sets of rigid
transformations setj1 = {H1,j1 , . . . , HNi,j1}, setj2 = {H1,j2 , . . . , HNi,j2} and two
Fréchet means μj1 , μj2 , respectively. The definition of the covariance between
these two objects is:

Cov(setj1 , setj2) =
1

Ni − 1

Ni∑
i=1

Logµj1
(Hi,j1).Logµj2

(Hi,j2)
T . (13)

The displacement Logµj
(Hi,j) is a vertical vector of size 3Nj with Nj the num-

ber of points of the object j.
Unlike the manifold itself, the tangent space is a vector space and its basis

could be changed using a simple linear transformation. With the definition of
covariance generalized, eigenvectors are computed with the tangent description,
and the Exp function is applied to get principal components in terms of rigid
transformations. This is the simplest generalization called tangent PCA (tPCA),
which amounts to unfold the whole distribution in the tangent space at the mean,
and to compute the principal components of the covariance matrix in the tangent
space. tPCA is good for analyzing data which are sufficiently centered around a
central value [13].

For an object j, the r first principal displacements δtPCA1,j , . . . , δtPCAr,j

are obtained by tPCA. Associated scores αtPCA1,i,j , . . . , αtPCAr,i,j are describing
the i-instance position along the principal displacements, with dataset variances
(eigenvalues) λtPCA1,j , . . . , λtPCAr,j . The following equation is used to re-create
an instance’s object with a reduced number of modes:

HtPCA,i,j = Expµj

(
r∑

k=1

αtPCAk,i,j .δtPCAk,j

)
,

FtPCA,i,j = HtPCA,i,j(Fj).
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3.3 Application to the Rib Cage

The dataset of rib cage meshes was obtained from 3D CT images. The 26 sub-
jects were males, around 70 years old (73.3 ± 11) with a standard morphology
(70 ± 9.8 kg in weight; 172 ± 5.5 cm in height). Meshes were obtained by using
a model-based segmentation described in [14]. This also ensures point corre-
spondences between all the meshes. The atlas mesh Mref was constituted of 37
independent sub-meshes (1,570 nodes per mesh in average ± 314) representing
the 12 vertebrae, 24 ribs and the sternum.

Fig. 4. Illustration of superposed right-side rib cages from the dataset with variations
of pose and shape in lateral (left) and frontal views (right). The various colors enable
to distinguish bones. (Color figure online)

We applied the proposed method to the rib cage dataset, instances were
subjects and objects were bones. A pre-alignment was applied to superimpose
subjects (Fig. 4). Multiple alignments were applied to compute rigid transforma-
tions used in tPCA and mean shapes used to define the norm.

To illustrate (Fig. 5) the different orthogonal modes retrieved using the pro-
posed method, three models were reconstructed for each of the first three princi-
pal modes. Those models were reconstructed by setting αm to −3

√
λm, 0, 3

√
λm

for m = 1, 2, 3 in the formula:

HtPCAm,j = Expµj
(αm.δtPCAm,j),

FtPCAm,j = HtPCAm,j(Fj).

As expected, a relatively small number of modes accounted for most of the
pose variability in the dataset. The accuracy of the model was evaluated by
reconstructing subjects from a reduced number of components and comparing
them with true geometries. The reconstruction errors were calculated as mean
Euclidean distances.

The method to study pose variations was compared with the method using
rotation vector description as tangent space [8,9]. The reconstruction distances
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Fig. 5. First (m = 1), second (m = 2) and third (m = 3) principal modes of the rib
cages dataset in lateral view and frontal view. The right side fo the rib cage models
was rendered for −3, 0, 3 times the standard deviation explained by the corresponding
mode. The middle column is the mean shape.
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Fig. 6. Subject reconstruction error with respect to the number of principal modes
after a tPCA. Each color refers to a subject. Left, principal modes were computed
with the new metric. Right, principal modes were obtained with the standard rotation
metric. (Color figure online)

were better in average for a reduced number of tPCA modes with the method
presented in this study. We can see in Fig. 6 on the left graph that for a small
number of modes, the error is much lower. The proposed metric facilitated lower
reconstruction error for given number of components retained. About 4 compo-
nents are needed for a similar reconstruction error obtained with 10 components
of the standard metric. This shows that the new method is adapted to study
articulated elongated bones like ribs.

4 Conclusion

In this paper, we introduced a new metric to perform statistical analysis on rigid
transformations. Unlike previous metric, this one takes into account the shape
of the object by integrating the inertia matrix. A tPCA was performed with
this new metric on a dataset of rib cages. As the rib is an elongated anisotropic
structure which is very elongated, it highlights the interest of this metric. In
particular, the principal modes we obtained appear more suitable to reconstruct
a subject with a reduced number of parameters.
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